Skip to main content

Characterization Tests

Having worked with some truly awful codebases a common problem tends to arise every now and then. You need to make a change within some legacy component that most likely has limited or no automated tests around. This can be a scary process.

There are a few techniques you can use to limit the fear of breaking some legacy code such as sprout methods or classes, however these aren't always optimal in all scenarios.

Another option is characterization tests or "what is this bit of code actually doing?".

  1. Start with a simple test such as "ItWorks".
  2. Run the test - watch it fail.
  3. Using the stacktrace or error reported, write some additional setup.
  4. Run the test - watch it get past the previous error.
  5. Rinse and repeat step 3 - 4 until green.

As part of the first step you should keep the initial test as simple as possible. For example if an input to the system under test (SUT) takes a Foo object, just instantiate Foo. Don't start setting values or fields on Foo. Let the failing test indicate what needs to be set such as a BarException informing you that "bar must be greater than zero" as part of step three.

By now you should have exercised a good chunk of the system under test. However you may need to add additional tests. For example if the code contained an "if" statement, you would need at least two characterization tests. A good way to detect how many tests you need is a code coverage tool, or manually inserting assertions into the SUT to show any missing coverage. Likewise a good manual review is required to fully detect any other tests you may have missed such as boundary cases.

Now the fun can begin. You can refactor like crazy.

Afterwards you should have a nicely refactored component that you can easily extend or modify to add your new feature. You also have a solid suite of tests to prove you've not broken anything. These tests will also document the current behaviour of the system - bugs included.

Examples

Comments

Popular posts from this blog

Three Steps to Code Quality via TDD

Common complaints and problems that I've both encountered and hear other developers raise when it comes to the practice of Test Driven Development are: Impossible to refactor without all the tests breakingMinor changes require hours of changes to test codeTest setup is huge, slow to write and difficult to understandThe use of test doubles (mocks, stubs and fakes is confusing)Over the next three posts I will demonstrate three easy steps that can resolve the problems above. In turn this will allow developers to gain one of the benefits that TDD promises - the ability to refactor your code mercifully in order to improve code quality.StepsStop Making Everything PublicLimit the Amount of Dependencies you Use A Unit is Not Always a Method or ClassCode quality is a tricky subject and highly subjective, however if you follow the three guidelines above you should have the ability to radically change implementation details and therefore improve code quality when needed.

DRY vs DAMP in Tests

In the previous post I mentioned that duplication in tests is not always bad. Sometimes duplication becomes a problem. Tests can become large or virtually identically excluding a few lines. Changes to these tests can take a while and increase the maintenance overhead. At this point, DRY violations need to be resolved.SolutionsTest HelpersA common solution is to extract common functionality into setup methods or other helper utilities. While this will remove and reduce duplication this can make tests a bit harder to read as the test is now split amongst unrelated components. There is a limit to how useful such extractions can help as each test may need to do something slightly differently.DAMP - Descriptive and Meaningful PhrasesDescriptive and Meaningful Phrases is the alter ego of DRY. DAMP tests often use the builder pattern to construct the System Under Test. This allows calls to be chained in a fluent API style, similar to the Page Object Pattern. Internally the implementation wil…

Coding In the Real World

As a student when confronted with a problem, I would end up coding it and thinking - how do the professionals do this?For some reason I had the impression that once I entered the industry I would find enlightenment. Discovering the one true way to write high quality, professional code.It turns out that code in industry is not too far removed from the code I was writing back when I knew very little.Code in the real world can be:messy or cleanhard or easy to understandsimple or complexeasy or hard to changeor any combination of the aboveVery rarely will you be confronted with a problem that is difficult. Most challenges typically are formed around individuals and processes, rather than day to day coding. Years later I finally have the answer. Code in the real world is not that much different to code we were all writing when we first started out.If I could offer myself some advice back in those early days it would be to follow KISS, YAGNI and DRY religiously. The rest will fall into plac…

Feature Toggles

I'm a fan of regular releasing. My background and experience leads me to release as regularly as possible. There are numerous benefits to regular releases; limited risk, slicker release processes and the ability to change as requirements evolve.The problem with this concept is how can you release when features are not functionally complete?SolutionIf there is still work in progress, one solution to allow frequent releases is to use feature toggles. Feature toggles are simple conditional statements that are either enabled or disabled based on some condition.This simple example shows a feature toggle for an "Edit User" feature. If the boolean condition is false, then we only show the "New User" feature and the "Admin" feature. This boolean value will be provided by various means, usually a configuration file. This means at certain points we can change this value in order to demonstrate the "Edit User" functionality. Our demo environment could …

Reused Abstraction Principle

This is the second part of my series on abstractions.Part 1 - AbstractionsPart 3 - Dependency Elimination PrincipleThe Reused Abstraction Principle is a simple in concept in practice, but oddly rarely followed in typical enterprise development. I myself have been incredibly guilty of this in the past.Most code bases have a 1:1 mapping of interfaces to implementations. Usually this is the sign of TDD or automated testing being applied badly. The majority of these interfaces are wrong. 1:1 mappings between interfaces and implementations is a code smell.Such situations are usually the result of extracting an interface from an implementation, rather than having the client drive behaviour.These interfaces are also often bad abstractions, known as "leaky abstractions". As I've discussed previously, these abstractions tend to offer nothing more than simple indirection.ExampleApply the "rule of three". If there is only ever one implementation, then you don't need …