Skip to main content

Dependency Injection (DI) Containers

Strengths

One place for configuration
Rather than scattered through out the system. Most DI containers have some sort of "module" system where you group associated components together.
Scoping
Different types of lifestyle can be achieved. Per request, per thread, singleton and others. Usually other frameworks have the ability to plug into these containers, meaning such features integrate nicely.
Feature rich
Included along with the basic DI components is usually a large amount of additional features which may or may not be needed.

Weaknesses

Heavyweight
Usually in the form of frameworks or libraries. DI is a simple concept, but such containers can make getting to grips with it tremendously difficult.
Config
Configuration can be difficult. Rather than just applying DI you need to learn the tooling. XML configuration has widely fell out of favour, but even code based configurations can be costly to setup.
Runtime errors
Any errors that might have occurred at compile time (in a static language) now become runtime errors. Circular references are easily introduced if you are not careful. Made a mistake during configuration? The system will be out of action. If you're lucky the stacktrace can point you in the right direction, but usually these are vague and/or confusing.
Magic
With the container in charge you lose control of what should be an easy part of your development process. The more convention based configuration you apply, the more chance things can go wrong. Simple changes such as multiple implementations of an interface can prove difficult to configure without breaking previous conventions. Much of the time adding a new class to the system feels risky - you won't know until runtime if you've got it working.

Alternatives

KISS
Keep your dependency wiring at your application root - most likely main. This is my preferred, default approach to begin with.
KISS - Modules
If this configuration starts to get out of hand - use modules. Need to modify how the kitchen is built? Just open up KitchenModule.cs. With direct access to the references of these dependencies you can control scoping. For example you can re-use the same kitchen instance between house instances.
Refacator
As always you can refactor towards an DI container if you feel the need to use one.

Comments

Popular posts from this blog

Constant Object Anti Pattern

Most constants are used to remove magic numbers or variables that lack context. A classic example would be code littered with the number 7. What does this refer to exactly? If this was replaced with DaysInWeek or similar, much clarity is provided. You can determine that code performing offsets would be adding days, rather than a mysterious number seven.Sadly a common pattern which uses constants is the use of a single constant file or object. The beauty of constants is clarity, and the obvious fact such variables are fixed. When a constant container is used, constants are simply lumped together. These can grow in size and often become a dumping ground for all values within the application.A disadvantage of this pattern is the actual value is hidden. While a friendly variable name is great, there will come a time where you will want to know the actual value. This forces you to navigate, if only to peek at the value within the constant object. A solution is to simple perform a refactor …

Three Steps to Code Quality via TDD

Common complaints and problems that I've both encountered and hear other developers raise when it comes to the practice of Test Driven Development are: Impossible to refactor without all the tests breakingMinor changes require hours of changes to test codeTest setup is huge, slow to write and difficult to understandThe use of test doubles (mocks, stubs and fakes is confusing)Over the next three posts I will demonstrate three easy steps that can resolve the problems above. In turn this will allow developers to gain one of the benefits that TDD promises - the ability to refactor your code mercifully in order to improve code quality.StepsStop Making Everything PublicLimit the Amount of Dependencies you Use A Unit is Not Always a Method or ClassCode quality is a tricky subject and highly subjective, however if you follow the three guidelines above you should have the ability to radically change implementation details and therefore improve code quality when needed.

DRY vs DAMP in Tests

In the previous post I mentioned that duplication in tests is not always bad. Sometimes duplication becomes a problem. Tests can become large or virtually identically excluding a few lines. Changes to these tests can take a while and increase the maintenance overhead. At this point, DRY violations need to be resolved.SolutionsTest HelpersA common solution is to extract common functionality into setup methods or other helper utilities. While this will remove and reduce duplication this can make tests a bit harder to read as the test is now split amongst unrelated components. There is a limit to how useful such extractions can help as each test may need to do something slightly differently.DAMP - Descriptive and Meaningful PhrasesDescriptive and Meaningful Phrases is the alter ego of DRY. DAMP tests often use the builder pattern to construct the System Under Test. This allows calls to be chained in a fluent API style, similar to the Page Object Pattern. Internally the implementation wil…