Skip to main content

A Unit is Not Always a Method or Class

Part three of my Three Steps to Code Quality via TDD series. The most important concept when coupled with the previous two points - not every unit will relate to a method or class.

Most introductions into TDD use simple examples. Even the excellent TDD by Example uses a value object in terms of Domain Driven Design. Most introductory articles on the Internet suffer the same fate. While these are great for demonstrations, they don't relate to what most developers need to code on a day to day basis. It's around this point where people proclaim that the benefit of automated testing (even after the fact) is a waste of time.

One of my biggest revelations with TDD was that each unit does not need to equate to a single method or class. For a long time I followed what others did. Each collaborator would be injected and replaced with a test double. Each class would have a corresponding test file. However as I have stated in the introduction, this leads to problems.

We should test units of behaviour, not units of implementation. Given we know we should be using as few dependencies as possible, and we know we should limit visibility, each test should be simple to write. As part of the refactor step if we choose to introduce a new class that is fine. There is no need in most cases to extract this and introduce a test double. Every time this is done we tie the test closer and closer to the implementation details. Every class having a corresponding test file is wrong.

By testing a unit of behaviour we can chop and change the internals of the system under test without breaking anything. This allows the merciless refactoring automated testing advertises as a benefit.

Aren't you describing integration testing?

No. Tests should be isolated as I've documented before, but there is nothing stating they should be isolated from the components they work with. If we isolate at the method or class level we make testing and refactoring much harder. Due to the term "unit" being so closely linked with a class or method, I like the naming convention Google use for their tests - small, medium and large.

Additionally an excellent article from Martin Fowler on the subject of unit testing introduces two new terms, solitary and sociable tests. Neither one style alone works so the type of test you write should be based on context. Unfortunately the industry seems to be fixated on solitary testing.

Sociable Tests

Work great at the aggregate root level. Does the object do what we expect it to? It can use zero or many collaborators behind the scenes but these are implementation details. Here we would limit the use of test doubles as much as possible but still have fast, isolated tests. As generalization - most automated testing should fall into this category as the core domain of your application is likely to have the most amount of logic present.

Solitary Tests

Useful at the adapter or system edge. For example, does the controller invoke the correct application service? We don't care how it works behind the scenes. Anything beyond this service would be a test double. These sort of tests are more closely coupled to implementation details so should be used sparingly.

Doesn't this lead to huge tests?

No, not really. As you will limit implementation details leaking into the public API the use of test doubles will reduce. This will shrink test setup and in most cases improve readability. Worrying about large tests shouldn't be a problem with this style of testing. You will not reduce the amount of tests required, however you will find them to be much more stable and resilient than before.


Popular posts from this blog

Three Steps to Code Quality via TDD

Common complaints and problems that I've both encountered and hear other developers raise when it comes to the practice of Test Driven Development are: Impossible to refactor without all the tests breakingMinor changes require hours of changes to test codeTest setup is huge, slow to write and difficult to understandThe use of test doubles (mocks, stubs and fakes is confusing)Over the next three posts I will demonstrate three easy steps that can resolve the problems above. In turn this will allow developers to gain one of the benefits that TDD promises - the ability to refactor your code mercifully in order to improve code quality.StepsStop Making Everything PublicLimit the Amount of Dependencies you Use A Unit is Not Always a Method or ClassCode quality is a tricky subject and highly subjective, however if you follow the three guidelines above you should have the ability to radically change implementation details and therefore improve code quality when needed.

DRY vs DAMP in Tests

In the previous post I mentioned that duplication in tests is not always bad. Sometimes duplication becomes a problem. Tests can become large or virtually identically excluding a few lines. Changes to these tests can take a while and increase the maintenance overhead. At this point, DRY violations need to be resolved.SolutionsTest HelpersA common solution is to extract common functionality into setup methods or other helper utilities. While this will remove and reduce duplication this can make tests a bit harder to read as the test is now split amongst unrelated components. There is a limit to how useful such extractions can help as each test may need to do something slightly differently.DAMP - Descriptive and Meaningful PhrasesDescriptive and Meaningful Phrases is the alter ego of DRY. DAMP tests often use the builder pattern to construct the System Under Test. This allows calls to be chained in a fluent API style, similar to the Page Object Pattern. Internally the implementation wil…

Coding In the Real World

As a student when confronted with a problem, I would end up coding it and thinking - how do the professionals do this?For some reason I had the impression that once I entered the industry I would find enlightenment. Discovering the one true way to write high quality, professional code.It turns out that code in industry is not too far removed from the code I was writing back when I knew very little.Code in the real world can be:messy or cleanhard or easy to understandsimple or complexeasy or hard to changeor any combination of the aboveVery rarely will you be confronted with a problem that is difficult. Most challenges typically are formed around individuals and processes, rather than day to day coding. Years later I finally have the answer. Code in the real world is not that much different to code we were all writing when we first started out.If I could offer myself some advice back in those early days it would be to follow KISS, YAGNI and DRY religiously. The rest will fall into plac…

Feature Toggles

I'm a fan of regular releasing. My background and experience leads me to release as regularly as possible. There are numerous benefits to regular releases; limited risk, slicker release processes and the ability to change as requirements evolve.The problem with this concept is how can you release when features are not functionally complete?SolutionIf there is still work in progress, one solution to allow frequent releases is to use feature toggles. Feature toggles are simple conditional statements that are either enabled or disabled based on some condition.This simple example shows a feature toggle for an "Edit User" feature. If the boolean condition is false, then we only show the "New User" feature and the "Admin" feature. This boolean value will be provided by various means, usually a configuration file. This means at certain points we can change this value in order to demonstrate the "Edit User" functionality. Our demo environment could …

Reused Abstraction Principle

This is the second part of my series on abstractions.Part 1 - AbstractionsPart 3 - Dependency Elimination PrincipleThe Reused Abstraction Principle is a simple in concept in practice, but oddly rarely followed in typical enterprise development. I myself have been incredibly guilty of this in the past.Most code bases have a 1:1 mapping of interfaces to implementations. Usually this is the sign of TDD or automated testing being applied badly. The majority of these interfaces are wrong. 1:1 mappings between interfaces and implementations is a code smell.Such situations are usually the result of extracting an interface from an implementation, rather than having the client drive behaviour.These interfaces are also often bad abstractions, known as "leaky abstractions". As I've discussed previously, these abstractions tend to offer nothing more than simple indirection.ExampleApply the "rule of three". If there is only ever one implementation, then you don't need …