Skip to main content

Dependency Elimination Principle

This is the third, and final part of my series on abstractions.

I've wrote about what good dependencies are before, and the benefits if you can limit and remove them where possible.

You can take this idea further though, by applying concepts from functional programming such as "depend on values rather than dependencies".

A wise colleague started me down this path of passing values, rather than dependencies on collaborators after we repeatedly found ourselves depending on implementation details. This meant our high level domain logic was tightly coupled to low level implementation details.

Brian Geihsler reminded me of this concept with an excellent demonstration of this in practice and has allowed me to put a name to this practice.

Additionally J.B. Rainsberger's example is with a virtual clock, another common dependency we often need. In this case, ask for the time, not how you get the time. The example also highlights another common problem with conventions when using a framework or library.

Here we can handle commands but only those that match the signature of taking a single command, and returning no response. In order to apply the Dependency Elimination Principle (DEP) and remove the clock wrapper we can introduce an overload. Our tests will be expressed using the overload, while the production code will make use of the standard method. If the class in question has a relevant set of interfaces, the overload would be omitted from this to ensure that consumers have a clean, focused API to consume.

When the DEP is applied to other dependencies such as configuration details, flexibility is achieved by the ability to provide these values from any source. As a side effect, coupling has been reduced, while also removing an unnecessary abstraction from the codebase.

Try to apply the DEP where possible. Remove as many dependencies as possible for flexible, maintainable code. Not all dependencies can be eliminated, but unless the dependency is a valid abstraction it may be worth considering removing or reducing use.

Comments

  1. Looks good, but in your last Handle() function, I'd rename timeNow to asOf or asOfInstant, in order to emphasise that that function doesn't rely on what the instant of time means. Calling that parameter timeNow provides a good example of a leaky abstraction: an irrelevant detail creeps in only because of how *one client* intends to use the function.

    ReplyDelete
    Replies
    1. Thanks for the feedback.

      I mentioned in the gist (now updated) that a better name should be used. asOfInstant is pretty nice the more I think about it, especially given your second point about how a single client uses the method. Another client would be your tests, at which point timeNow may be future, past, present. Great point.

      Delete

Post a Comment

Popular posts from this blog

Three Steps to Code Quality via TDD

Common complaints and problems that I've both encountered and hear other developers raise when it comes to the practice of Test Driven Development are: Impossible to refactor without all the tests breakingMinor changes require hours of changes to test codeTest setup is huge, slow to write and difficult to understandThe use of test doubles (mocks, stubs and fakes is confusing)Over the next three posts I will demonstrate three easy steps that can resolve the problems above. In turn this will allow developers to gain one of the benefits that TDD promises - the ability to refactor your code mercifully in order to improve code quality.StepsStop Making Everything PublicLimit the Amount of Dependencies you Use A Unit is Not Always a Method or ClassCode quality is a tricky subject and highly subjective, however if you follow the three guidelines above you should have the ability to radically change implementation details and therefore improve code quality when needed.

DRY vs DAMP in Tests

In the previous post I mentioned that duplication in tests is not always bad. Sometimes duplication becomes a problem. Tests can become large or virtually identically excluding a few lines. Changes to these tests can take a while and increase the maintenance overhead. At this point, DRY violations need to be resolved.SolutionsTest HelpersA common solution is to extract common functionality into setup methods or other helper utilities. While this will remove and reduce duplication this can make tests a bit harder to read as the test is now split amongst unrelated components. There is a limit to how useful such extractions can help as each test may need to do something slightly differently.DAMP - Descriptive and Meaningful PhrasesDescriptive and Meaningful Phrases is the alter ego of DRY. DAMP tests often use the builder pattern to construct the System Under Test. This allows calls to be chained in a fluent API style, similar to the Page Object Pattern. Internally the implementation wil…

Coding In the Real World

As a student when confronted with a problem, I would end up coding it and thinking - how do the professionals do this?For some reason I had the impression that once I entered the industry I would find enlightenment. Discovering the one true way to write high quality, professional code.It turns out that code in industry is not too far removed from the code I was writing back when I knew very little.Code in the real world can be:messy or cleanhard or easy to understandsimple or complexeasy or hard to changeor any combination of the aboveVery rarely will you be confronted with a problem that is difficult. Most challenges typically are formed around individuals and processes, rather than day to day coding. Years later I finally have the answer. Code in the real world is not that much different to code we were all writing when we first started out.If I could offer myself some advice back in those early days it would be to follow KISS, YAGNI and DRY religiously. The rest will fall into plac…

Feature Toggles

I'm a fan of regular releasing. My background and experience leads me to release as regularly as possible. There are numerous benefits to regular releases; limited risk, slicker release processes and the ability to change as requirements evolve.The problem with this concept is how can you release when features are not functionally complete?SolutionIf there is still work in progress, one solution to allow frequent releases is to use feature toggles. Feature toggles are simple conditional statements that are either enabled or disabled based on some condition.This simple example shows a feature toggle for an "Edit User" feature. If the boolean condition is false, then we only show the "New User" feature and the "Admin" feature. This boolean value will be provided by various means, usually a configuration file. This means at certain points we can change this value in order to demonstrate the "Edit User" functionality. Our demo environment could …

Reused Abstraction Principle

This is the second part of my series on abstractions.Part 1 - AbstractionsPart 3 - Dependency Elimination PrincipleThe Reused Abstraction Principle is a simple in concept in practice, but oddly rarely followed in typical enterprise development. I myself have been incredibly guilty of this in the past.Most code bases have a 1:1 mapping of interfaces to implementations. Usually this is the sign of TDD or automated testing being applied badly. The majority of these interfaces are wrong. 1:1 mappings between interfaces and implementations is a code smell.Such situations are usually the result of extracting an interface from an implementation, rather than having the client drive behaviour.These interfaces are also often bad abstractions, known as "leaky abstractions". As I've discussed previously, these abstractions tend to offer nothing more than simple indirection.ExampleApply the "rule of three". If there is only ever one implementation, then you don't need …